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It is shown that  the acoust ics  problem of the propagat ion  of p lane  
waves " inc ident"  at  a f ixed angle  to inhomogeous ha l f - space  (*two-  

d imens ional"  problem) is equ iva len t  to the case of normal  inc idence  

to some "f ic t i t ious"  ha l f - space  with the corresponding ve loc i ty  v2(z ) = 
= v z ( z ) / c o s  a (z )  ( "one -d imens iona l "  problem).  

Algori thms,  by means  of which approx imate  ( t ak ing  into account  

only a def in i te  number  of "secondary" waves) and exac t  ( t ak ing  into 

account  a l l  possible "secondary" wave 9 ca lcu la t ions  of the wave f ie lds  

can be made ,  are g iven.  

The problem of the propagat ion  of a p lane  nonstat ionary wave in -  

c ident  at some  fixed angle  c~ 0 to a ha l f - space  whose pa ramete r s  are 

arbi trary functions of only  one space coordinate  x is e x a m i n e d .  

It is shown that  fundamen ta l ly  this problem differs in no way from 

the case of normal  inc idence  of p lane  waves to a ha l f - space .  In other 

words, the " two-d imens iona l "  p rob lem of p l a n e - w a v e  propagat ion in 

acoust ics  reduces to the "one -d imens iona l "  problem, whose solution 

was given in [1]. 
Let the x axis be the in ter face  of two ha l f - spaces  1 and 9, the wave 

processes in which are described by a s ingle wave equat ion  (acous t ic  

case); the upper ha l f - space  1 is homogeneous  and the lower ha l f - space  

2 is inhomogeneous  (Fig. 1). 
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Fig.  1 

Just as in [1], we shall  assume that  the propagat ion  ve loc i ty  of  a 

dis tnrbance v and the densi ty  of the m e d i u m  p are arbi trary functions 

of depth such that: (a) the wave impedance  

Z = v C) p (:) (1) 

remains  continuous; and (b) the de r iva t ive  of the wave impedance  with 
respect  to the  coord ina te  z remains  bounded in the ent i re  inbomogene .  

ous b a l i - s p a c e  

dZ (=) 
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Later on, constraints (a) and (b) w i l l  be e l im ina t ed ,  s ince the con-  
structed solution permi t s  extens ion  to the case of discontinuous m e d i a .  

Let a generator  of p lane  waves,  which are propagated  at some f ix -  

ed angle  c% to the inhomogeneous  ha l f - space ,  be loca ted  in m e d i u m  
1. The process of p ropaga t ion  of p l ane  nonsta t ionary waves in such a 
m e d i u m  wi l l  be understood as a solution of the equat ions of acoust ics  
sat isfying the fol lowing condi t ions.  At any fixed m o m e n t  in t i m e  t0, 
there  are three  wave fronts in the  med ium:  (a) the plane front of the 

inc ident  wave;  (b) the p lane  front of the re f lec ted  wave;  and (c) the 
curv i l inear  front of the refracted wave;  in the domain  of (a)-(c) ,  which 

is a func t ion of t 0 , the  d i sp l acemen t  of the points U(x, z, t) = 0. 

An arbitrary function f( t ) ,  which describes the " in i t i a l "  d i sp lace -  

ment  of the points of the homogeneous ha l f - space  in t ime ,  is specif ied 

in the  v ic in i ty  of the i nc iden t -wave  front. 
With the g iven  f( t ) ,  i t  is required to de te rmine  the d i sp lacement  

of any point  of the m e d i u m  such that  condit ions (a), (b), and (c) 

are satisfied.  
The introduction of this i dea l i za t ion  of the process of p lane  -wave 

propagat ion is based in the fol lowing premises .  

1) Each ray of the p lane  inc ident  wave satisfies the Format pr inciple ;  

in other words, a long any ray 

sin ~t (z) / v (z) = const. = s in  a0 / vo. (3) 

2) It is easy to show tha t  the t ravel  t i m e  along a ray 13A, which sa-  

t isfies (3), is not less than tha t  along the straight  ray DA. In other 

words, disturbances tha t  are propagated  a long rays that  satisfy (g) can -  
not over take  disturbances that  are propagated a long  rays of d i rec t  waves 

for any point  of the inhomogeneous m e d i u m  and for any law of change 

in ve loc i ty  v(z). 
8) Since the pa ramete r s  of the med ium are functions only of z, it 

can be asserted that  the process of "p lane  wave" propagat ion in such a 

m e d i u m  is " se l f - s imi l a r ,  ~ with ve loc i ty  v* - v 0 csc c% along the x 

aixis,  i . e . ,  if  the d i sp lacements  U(t, x, z) at two points M(0, z) and 

N(x, z) ly ing on a s ingle hor izonta l  are examined ,  then they are iden t i -  

cal ,  if  we do not t ake  into account  the t i m e  lag 

t (:~:) = (x / z,n) sin ~,) (4) 

of the beginning of osc i l la t ions  at one point  r e l a t ive  to the other.  In 
other words, the d i sp lacements  of points  of the m e d i u m  U(x, z, t) is a 

function of not three,  but two independent  var iables ,  i . e . ,  

U (t, x, z) = U (4, z) (E == t - (c / r0) sin :qt). (5) 

Condit ions (5) ac tua l ly  ind ica te  tha t  the " two-d imens iona l "  p rob lem 

of acoust ics  degenera tes  to the "one -d imens iona l "  in the case of i n c i -  

dence  of p lane  nonstat ionary waves.  
In order to construct such a solution, i t  is necessary to solve a sys- 

t em of pa r t i a l  d i f fe rent ia l  equat ions in the d i sp l acemen t  

0 { I OUr OV-T[ 02I'r, - 
Oa~: P (:) z'~ (;) l.~c' - :- , )c=J] = P(z) ;Ti-'- 

o /  [ou,, m i , ] l  o~u~ 
(~) 

In the case of inc iden t  p l ane  waves, the Cauchy problem for (6) 

is d i f f icul t  to formulate ,  s ince at  t i m e  t = 0 not a l l  of the wave f ield,  
but only a par t  of i t  (a t  the front of the inc ident  p l ane  wave a) is assum- 

ed to be known. In order to avoid this  d i f f icul ty ,  we wi l l  use the new 

var iables  g and r .  The var iab le  g ( t i m e  analog) is def ined in (5); the 

va r iab le  r (ana log  of depth z) is defined by 

z 

r : .~ ~ , , - ( ; ) - -  ~/:, (7) 
[ I  

where c~(z) has the m e a n i n g  of  the angle  of inc idence  and satisfies (3).  
On the strength of (5) and (q), we can  write 

7~t -> ~ ' ~ " - - , :  (T) - -o: ' (8) 
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O s in% 0 s i n s ( ' 0  O (8) 
Ox v o 0~ t, (~) O~ (cont'd) 

and system (6) takes the form 

~-~ q)(L ~ ) = o  

o~u (L ~) o G  (g, *) o2G (L r) 
OT 2 + 2p' (~) O'r O~ 2 + 

+ sin a (x) + -~J q) (~' "r) -t- 

O ~ (~, *) 
+ cosct (x) s ina(~)  OT cosa(z)  O, 

(9) 

which exactly coincides with (8) from [1]. 

If we change from ~- to the coordinate z in Eq. (13), in accordance 
with (7) and (8), then we obtain 

0 [ v2(z) OUz(~,~] , ,O~Uz(GZ)  
Oz p (z) cos2 a (~) Oz - -  = p ( z ) -  -0~ f16) 

By comparing (16) with (15) from [1], we can see that the ~two-di- 
mensional" problem in acoustics for plane waves is equivalent to the 
"one-dimensional" problem, in which the role of the velocity is play- 
ed by the expression v(z)/cos cffz) and the role of time is played by the 
variable ~, which was defined in (5). 

It was shown in [1] that for one and the same initial data (15), Eq. 
(13) is equivalent either to a system of integral relations of the form 

where 

Uz(LZ)  o u  (L~) 
�9 (% ~) ~ s i n a  ( x ) ~  + cos a (~) 0~ 

i v (~) O (~) cos a0 
p ( X ) ~ - l n  , p ( z ) - - 0  for x < 0 ,  

cos a (~) voPo, 

(lO) 

and the prime indicates the derivative with respect to T. 
It is how possible to formulate the Cauchy problem for system (9): 

to find a solution of system (9) with the initial data 

Uz (g, x)I~..<0 = 6(~ -- ~), Ux (~, "0 [a<0 - tg e06(~ -- x). (II) 

Here, 5* is the Dirac delta-function symbol. 
Thus, system (6) in the class of plane waves corresponds to system 

(9) with initial data of the type (11), which, in turn, admits reduction 
of order. 

We shall show that system (9) with intial data (11) is equivalent to 

OU z (L ~) OU~ (~, x) 
sin a (x) O~ + cos a (~) O~ = 0 

a u  z (g, ~) oU~ (L x) 
sin :t (~) 0~ + cos ct (1:) 0"r + 

the system 

(12) 

p" ('0 
+ ~ c o s  a (T) U~ (L x) = 0 

with the same initial conditions (11). 

In fact, the left side of the first equation of system (12) agrees with 
the first equation of (10). The first equation of (9), therefore, is auto- 
matically satisfied, and the second equation transforms to 

o"u~ (~, "0 aUz (L "r) o2r.r z (~, ~) 
O~ 2 + 2p' ( x ) ~  = o ~  (13) 

If the second equation of (12) is differentiated with respect to g and 
the the first equation of (12) is used, we arrive at the relation 

02 u~ 02 V, 0~ u~ ] 
sin a ('0 L-~-~ Ox~ 2p' ('0 - -~ - - j  = 0. (14) 

Inasmuch as sin aO) ~ 0, since "oblique" incidence is being con- 
sidered, Eq. (14) concides with Eq. (13). Thus, any solution U(Gr) of 
system (12) is contained among the solutions W(g,r) of system (9). Let 
us set up the difference s(g, r)  = W(~, r) --4J(g, r), which, obviously, 
will also be a solution of system (9), but now with zero initial condi- 
tions, since the initial data for W and U are one and the same. Hence, 
e(g,~-) ~- 0, from which follows the assertion of the equivalance of 
systems (9) and (12) for plane waves, i . e . ,  for one and the same ini- 
tial conditions of type (11). 

By similar reasoning it can be shown that system (12) with initial 
conditions (11) is equivalent to Eq. (13) (for determination of the ver- 
tical component of the displacement) with the initial data 

U (L ~)k<o = ~ (~ --  x), (15) 

gfl (~o, "~) = -- I ~2 (~o, x) dp (:r.) 
~c 

~'2 (~o, -c) = ~ (2~0-- 2"0 + i ~g~ (~o --  "~ § ~, z) dp (x) 
0 

(17) 

Or to a system of differential equations in first-order partial derivatives 

aT1 (~o,T) 0~tq (G, z) 
og 0r - -  p'(T) 'G(~o,~) 

0'G (go,r) 
0~ 0r + p'(~) YI(G,*) 

(18) 

where p(r) is defined in (10); the quantity go has the form 

~o = 1/2 (~ + "0. (19) 

The vertical component of the displacement is determined in this 
case by the formula 

Uz (L x) = W1 (G, T) + ~G (go, *)1 ,;-v(,). (20) 

The horizontal component, as is easily shown, can be found from 
the formula 

Ux (~, "~) = [~2 (~0, z) --  ~Itx (~o, x)l s -vcO tg a (x). (21) 

From system of integral relations (17), it follows that when hy(x)I < 
< ~, a solution always exist. 1 In addition, the solution satisfies condi- 
tions (a)-(e) given at the beginning of the article, and when go < r 
it vanishes identically. In other words, the condition G0 < which, using 
(19), (5), and (7), can be written as 

i eos ct (~) t - ! sin % - -  v ~  dz < 0 
P0 

0 

(22) 

determines the refracted wave front. In a homogeneous medium, as can 
easily be seen, inequality (22) is a condition for determining the front 
of an ordinary plane wave. 

Thus, in order to find the solution of system (6) in the class of 
plane waves, it is necessary to solve: a) either system of differential 
equations (12) or (18); b) system of integral relations (17); or c) dif- 
ferentia1 equation (13) or (16) with the corresponding initial conditions 
of type (11) and (15), and to use relations (20) and (21). 

Note that a system similar to (18) was obtained in [2] for a more 
general problem: the incidence of a plane nonstationary wave on an 
elastic half-space. In that paper, however, there ~; no system of in- 
tegral relations like (17), so that the author of [2] was unable to make 
estimates in the method of successive approximations. Nor is these an 
extension to the case of discontinuous media, or algorithms for calcu- 
lating the totat wave field raking into account "secondary" waves. 
Let us consider these problems. 

IA proof of this statement is given in [1]. 
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The points at which the function [ p'(x) [ is not bounded will be 
singular points of integral relations (17). This unboundedness ma~ be 
caused by two factors: a) a discontinuity of the wave impedance" 
Z = p(x)v(x), if condition (2) is abandoned; and b) the presence of a 
"turning ~ point of the ray, at which cos a(x) = 0. From a formal point 

of view, these two eases are the same. 
In order to extend the solution to the case of unbounded [ p'(x) ], 

let us examine an inhomogeneous layer between two homogeneous 
half -  spaces, which degenerates to a sharp interface (i. e.,  the thick- 
ness of the layer H ~ 0 with preservation of the wave impedances out- 
side of the layer; therefore, Ip' (x)[ -~ ~*). 

In this case, all "secondary" waves in the layer *gather" at a 
single point at the same moment of time. Therefore, we must pass 
from U z (g, r)  to the total integral amplitude, defined by the expres - 
sion 

s~ = ~ u~(~, x) ag, 
0 

(2a) 

where, from practical considerations, S z must be finite [1]. As in [1], 
in the case [ p'(x) ] = *~ the solution can be formally determined by 
letting 

X ('rz) X (T,) 6 (~ -- x~) (24) 

for the upper half-space and 

2X (~D 
u~ (~D = Z (~2) + Z (xD 0 (~ - ~) (25) 

for the lower half-space, if the initial conditions were assigned in the 
form (15). 

In expressions (24) and (25), the normal impedance of the medium 

is defined as [3]: 

X ('ri) = p (~) v ('~t) / cos a (x~) (i = t, 2), (26) 

where r I and r 2 are certain points of the upper and lower homogeneous 
half-space, respectively. The thus-defined functions Uz(gi) and 
Uz(~Z) may be considered new initial impulses for the homogeneous 

half-spaces. 
Note that formulas (24) and (25) can be extended, as in [3], to 

the case of complex impedances of the.medium, i . e . ,  they can be 
used in the geometric-shadow region, where X(gl) is a purely imagi- 
nary quanitity. 

Now let us turn to the problem of approximate and exact calcula- 
tion of the wave field. For definiteness, we shall consider a reflected 

wave, i . e . ,  r =0 .  
In many cases of practical interest, it is often sufficient to exa- 

mine not the entire wave field, but simply waves that have undergone 
one reflection in the layer [1]. This is explained as follows. 

As is known, a reflected wave r which corresponds to some 
arbitrary continuous function f(t)  at the incident-wave front, is def- 

ined as 

(p(t)= I U ~ ( ~ ) / ( t , ~ ) d ~ .  (27) 
o 

Here, Us(g ) is the solution in the case of initial data (11) and (15). 
If the function I p'(x) ] is piecewise-continuous, then U6(g) can 

always be divided into two parts: a discontinuous part Ul(g), which 
corresponds to waves that have under~one one reflection in the layer, 

IThis refers to causes when the wave impedance is continuous, 

while its derivative is unbounded. 

and a continuous part Uz(g), which corresponds to all other "secondary" 
waves [1]. Then 

t l 

tp(t)= I U~(~) f ( t - -~)d~-b f U, (~) / ( t - -~)d~ .  (28) 
o o 

If f(t) is a strongly oscillating function, as compared with U2(g), 
then the second term of the right side of (28) gives a certain back- 
ground, which, in many cases cannot be taken into account, and the 
wave field is calculated from the formula 

t 

o 

For each specific case of assignment of the parameters of the me- 
dium and the initial impulse f(t), by using the formula in [1] we can 
make calculations that permit accurate determination of the influence 
of the second term. However, it may not be advisable to do this, 
since for system (18) we can write a difference scheme, which by solv- 
ing we get the entire wave field, taking into account all possible "se- 
condary" waves. We can then compare the exact calculation with the 
approximate one by formula (29). Such a comparison was made and 
was found to be fully satisfactory for many practical problems. 

The difference scheme for (18) is the same as that in [1]. We set 
= kZx~ and r = nAz; it is assumed that /x~ = ZXr. The difference 

scheme, with account for extension to the ease of discontinuous media 
(24) and (25), can be written as 

Ux (k -t- 1, n) = (i q- qv) Ui (k, n + t) - -  qnUs (k, n) 

~2  (k + 1, n) = (t  - -  q~-l)  v~  (k, n - i )  + q,~_iu1 (k, n) 
(80) 

p~+,v~+, / cos c~ (n + t) T p~v~ / cos a (n) = 

z (n + i) ~ x (n) )  
X(nq-  t ) - - X ( n )  �9 

The displacement components U z and U x are given by 

U z (k, n) = U x (k, n) -1- U s (k, n), 

(al) 
U~ (k, n) = tg a (n) [ U2 (k, n) -- UI (k, n) l. 

It is easy to show that difference scheme (30) approximates (18) 
with accuracy O(Ar), converges, and is stable. 

Note that (30) permits extension to the case of complex values of 
qn' At'  UI' and U2; in other words, we can calculate by (80) in the 
geometric-shadow region as well. 

In conclusion, it would appear desirable to study the solution of 
the wave equation in such a medium. The problem is to find the solu- 
tion of the wave equation 

O~U . 02U t o~g (a2) 
Ox~ t--gZi = v~(z) Ot~ 

when a plane uoastationary wave is incident to the inhomogeneous 
half-space at some angle a 0 . Reasoning as at the beginning of the 
article and using (5), (7), and (8), we arrive at the following Cauchy 
problem: 

02t] (~, o g  (~. .r) 
O~ "~) + 2p" ('r O~ -- 

(an) 
o~u (~, ~) (p (~) _ 1 ~ (T) cos ~o~ 

= ~ ~ in cos a ('c) ~ / 

with the initial conditions 

U (~, ~)I~..<o = 8 (~ - -  T).  ( s 4 )  

Comparing (33) and (84) and (18) and (15), we see that they are 
actually identical. The difference is that in Problem (33) and (34), 
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the parameter p(r) is somewhat different; it differs from (10) in sign 
and by the fact that p(r) = const. 

In other wor~s, everything that pertained to Uz(g, r) to an iden- 
tical degree to U(g, r) with the correction to p(r) mentioned above. 
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